DEEPLABCUT
Local Environment building(GPU Version)
My environment version
conda
cuda
cudnn
cudatoolkit
torch
torchaudio
torchvision
Visual Studio 2022
4070TS 16G显存
How to SETUP
Way 1
Download the .yaml file locally from the Deeplabcut home page
12cd Path_to_your_yaml_fileconda env create -f DEEPLABCUT.yaml
If errors occur, you can use
1conda env update -f DEEPLABCUT.yaml
to continue to create your env or update your env
If the cuda version is still CPU, then you need to install pytorch gpu versi ...
CV_learning_notes(6)
Fitting
Least Squares 最小二乘法
Assumption:仅考虑真实值与预测值之间的误差, 计算的是 y^\hat{y}y^ 与 yyy之间的距离
Formula: E=argmina,b∑i=1N∥yi−axi−b∥2=∥Y−XB∥2E = argmin_{a,b}\sum_{i = 1}^N \|y_i - ax_i -b\|^2 = \|Y - XB \|^2E=argmina,b∑i=1N∥yi−axi−b∥2=∥Y−XB∥2
Solution: B=(XTX)−1XTYB = (X^TX)^{-1}X^TYB=(XTX)−1XTY
但是如果line是vertical,最小二乘法将会失效
Total Least Squares 总体最小二乘法
Assumption: 同时考虑因变量和自变量中的误差,使用直线表示法,可处理vertical case,计算的是 (xi,yi)(x_i,y_i)(xi,yi) 到直线 ax+by=dax+by =dax+by=d 的垂直距离
Formula: E=argmina,b,d∑i=1N∥axi+ ...
CV_learning_notes(5)
Point Cloud
Introduction
Intro: 点云是一种用于表示三维空间中对象或场景的数据结构。在原始的实现中,它其实是一个包含多个三维坐标点的集合(这些点是通过对实际场景或物体的表面进行离散采样而得到的)。
Def: 点云是场景表面在给定坐标系下的离散表示
Properties:
高度灵活性Flexibility: 可用于表示各种类型的三维形状
数据密度可变性: 可sparse, 可dense
附加信息丰富性: 除了坐标外,可含其他属性信息。比如在重建中,点云一般还携带着color/intensity value, time, etc的信息。
Package Requirement
open3d in Python
One thing need to focus is that your open3d version should be correct, otherwise it will lead to dependency problems. You can deal with this by lowing the open3d version. ...
TEULM
Related Paper
Time Efficient Ultrasound Localization Microscopy Based on A Novel Radial Basis Function 2D Interpolation
Increasing frame rate of echocardiography based on a novel 2D spatio-temporal meshless interpolation
Environment Building
Matlab
Install required toolboxs, including Communications, Bioinformatics, Image Processing, Curve Fitting, Signal Processing, Statistics and Machine Learning,Parallel Computing, and Computer Vision Toolbox.
Run PALA_SetUpPaths.m to check whether you hav ...
3DGS_Env_Build
Local Environment building
What you need
Hardware
可用CUDA的设备(因此MACOS不能run 3DGS)
足够的显存(最好24G)
Software
Conda
C++ Compiler for Pytorch extensions(eg. Visual Studio)
CUDA SDK 11 for Pytorch extensions
所有的环境要版本适配
My environment version
conda 4.12.0
cuda 11.7
torch 1.12.1
torchaudio 0.12.1
torchvision 0.13.1
Visual Studio 2022
8G显存
How to SETUP
123SET DISTUTILS_USE_SDK=1 # Windows onlyconda env create --file environment.ymlconda activate gaussian_splatting
Execute the above command, then it ca ...
DIP-quiz-3
DIP_quiz_3 - Image segmentation
Q1 Thresholding
Factors affecting thresholding
Noise →\rightarrow→ Distribution of image, hard to execute thresholding process
foreground ratio →\rightarrow→ Distribution of image, hard to execute thresholding process
The uniformity of the illumination source →\rightarrow→ Distribution of image, hard to execute thresholding process
Otsu’s method
唯一需要注意的点在于,新的m1与m2的计算,是需要重新计算组内的概率分布!!! 即P1∗m1+P2∗m2=mGP_1*m_1 + P_2*m_2 = m_GP1∗m1+P2∗m2=mG, 而不是m1+m2=mGm_1 + ...
ARTS1422 Cheatsheet
I also handwrote some details on the printout chceatsheet, showing as follows
DIP-quiz-2
DIP_quiz_2 - Transform domain processing
Q1 Circular convolution
Difference between linear(full) convolution, circular convolution and periodical convolution
Linear convolution: the final length will be equal to M+N-1 and directly use the multiplication formula
Circular convolution: the final length will be equal to the original length L
use linear convolution to simulate by removing the addition lower bits to the target higher ones
the conv item can be seen as the periodic signal and t ...