DIP_review_2_1 - Frequency Domain Filtering(1)

1.Fourier Transform formula

  1. Four types of Fourier Transform
    • 时域非周期 时域周期
      频域非周期 CTFT(时间频域均连续) FS(CT,频域离散,时域连续)
      频域周期 DTFT(时间离散,频域连续) DFT(DT,时间频域均离散)
      • FS(CT) => x(t)=k=akejkw0tx(t) = \sum_{k=-\infty}^{\infty}a_ke^{jkw_0t} 频率离散且无周期
        • ak=1TTx(t)ejkw0ta_k = \frac{1}{T}\int_T x(t)e^{-jkw_0t} 时间连续且周期
      • CTFT => X(jw)=x(t)ejwtdtX(jw) = \int_{-\infty}^{\infty}x(t)e^{-jwt}dt 时间连续且非周期
        • x(t)=12πX(jw)ejwtdwx(t) = \frac{1}{2\pi}\int_{-\infty}^{\infty}X(jw)e^{jwt}dw 频率连续且非周期
      • DTFT => X(ejw)=k=x[n]ejwn,w[0,2π],w=2πTX(e^{jw}) = \sum_{k=-\infty}^{\infty}x[n]e^{-jwn}, w \in [0, 2\pi], w = \frac{2\pi}{T} 时间离散且非周期
        • x[n]=12π2πX(ejw)ejwndwx[n] = \frac{1}{2\pi}\int_{2\pi}X(e^{jw})e^{jwn}dw频率连续且周期
      • DFT(数字图像处理,实际上也就是DT) => X[K]=n=<N>x[n]ejk(2πN)n=akX[K] =\sum_{n=<N >}x[n]e^{-jk(\frac{2\pi}{N})n} = a_k
        • FS(DT\IDFT) => x[n]=1Nk=<N>akejk(2πN)nx[n] =\frac{1}{N} \sum_{k=<N>}a_ke^{jk(\frac{2\pi}{N})n}
        • DT 与 IDFT, DFT 与 DT求取a_k, 二者本质相同!!!
  2. 2D DFT and IDFT
    • DFT F(u,v)=x=<M>y=<N>f(x,y)ej2π(uxM+vyN)=Fx{Fy{f(x,y)}}F(u,v) = \sum_{x= <M>}\sum_{y= <N>}f(x,y)e^{-j2\pi(\frac{ux}{M}+\frac{vy}{N})} = F_x\{F_y\{f(x,y)\}\}
    • IDFT f(x,y)=1MNu=<M>v=<N>F(u,v)ej2π(uxM+vyN)f(x,y) = \frac{1}{MN} \sum_{u= <M>}\sum_{v= <N>}F(u,v)e^{j2\pi(\frac{ux}{M}+\frac{vy}{N})}
    • basis function => uxM+vyN\frac{ux}{M}+\frac{vy}{N}!!!
  3. Related calculation: 2D DFT in polar form: F(u,v)=F(u,v)ejΦ(u,v)F(u,v) = \| F(u,v)\|e^{-j\Phi(u,v)}
    • Fourier spectrum(频谱):
      • F(u,v)=[R2(u,v)+I2(u,v)]12\| F(u,v)\| = [R^2(u,v) + I^2(u,v)]^{\frac{1}{2}}
      • 反映不同frequency的幅度
    • Phase angle(相角):
      • Φ(u,v)=arctan(I(u,v)R(u,v))\Phi(u,v) = arctan(\frac{I(u,v)}{R(u,v)})
      • 反映空间位置信息,对于图片来说相角信息比频谱信息更加重要,所以对图片处理时,我们要注意对相角的偏移和影响
    • Power spectrum(功率谱):
      • P(u,v)=F(u,v)2P(u,v) = \| F(u,v)\|^2
      • 总能量
    • DC component(直流分量):
      • F(0,0)=x=<M>y=<N>f(x,y)=MNf(x,y)F(0,0) = \sum_{x= <M>}\sum_{y= <N>}f(x,y) = MN \overline{f(x,y)}
      • 反应图片的整体平均亮度,对于图片的亮度影响较大
    • 物体轮廓在低频,特征在高频

2.Sampling

  1. 1D sampling
    • image1
    • image2
    • 存在 Aliasing problem 当1ΔT=fs<=2fmax\frac{1}{\Delta T}=f_s<= 2f_{max}
    • 采样信号SΔT(t)=k=δ(tkΔT)时间=>S(μ)=1ΔTk=δ(μkΔT)S_{\Delta T(t)} = \sum_{k=-\infty}^{\infty}\delta(t-k\Delta T) 时间\\ => S(\mu) = \frac{1}{\Delta T}\sum_{k=-\infty}^{\infty}\delta(\mu-\frac{k}{\Delta T}) 频率
    • f(t)^=f(t)SΔT(t)=k=f(t)δ(tkΔT)\hat{f(t)} = f(t)\cdot S_{\Delta T(t) = \sum_{k=-\infty}^{\infty}f(t)\delta(t-k\Delta T)}采样变成周期性延拓
    • F(μ)^=1ΔTF(μ)S(μ)=1ΔTF(τ)S(μτ)dτ=1ΔTk=F(τ)δ(μτkΔT)dτ=1ΔTk=F(μkΔT)\hat{F(\mu)} = \frac{1}{\Delta T}F(\mu) * S(\mu) = \frac{1}{\Delta T}\int_{-\infty}^{\infty}F(\tau)S(\mu - \tau)d\tau \\= \frac{1}{\Delta T}\sum_{k=-\infty}^{\infty}\int_{-\infty}^{\infty}F(\tau)\delta(\mu-\tau-\frac{k}{\Delta T}) d\tau \\ = \frac{1}{\Delta T}\sum_{k=-\infty}^{\infty}F(\mu - \frac{k}{\Delta T}) 时域转为频域卷积,同时结果表现为频率域也出现周期性延拓
  2. 2D sampling
    • 采样信号SΔTΔZ(t,z)=m=n=δ(tmΔT,znΔZ)S_{\Delta T \Delta Z}(t,z) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty}\delta(t-m\Delta T, z - n\Delta Z)

3.Fourier Transform property

  1. Translation

    • f(x,y)ej2π(u0xM+v0yN)F(uu0,vv0)f(x,y)e^{j2\pi(\frac{u_0x}{M} + \frac{v_0y}{N})}\Leftrightarrow F(u-u_0,v-v_0)
    • f(xx0,yy0)F(u,v)ej2π(u0xM+v0yN)f(x-x_0,y-y_0)\Leftrightarrow F(u,v)e^{-j2\pi(\frac{u_0x}{M} + \frac{v_0y}{N})}
    • 同时可以通过频域平移简化FFTshift的操作 当u0=M2,v0=N2u_0 = \frac{M}{2}, v_0 = \frac{N}{2}
  2. Periodicity

    • f(x,y)=f(x+k1M,y)=f(x+k1M,y+k2N)=f(x,y+k2N)f(x,y) = f(x+k_1M,y) = f(x+k_1M,y+k_2N) = f(x,y+k_2N)
    • F(u,v)=f(u+k1M,v)=f(u+k1M,v+k2N)=f(u,v+k2N)F(u,v) = f(u+k_1M,v) = f(u+k_1M,v+k_2N) = f(u,v+k_2N)
    • 可以参考matlab 镜像填充选择circular参数时效果
  3. Rotation(极坐标)

    • f(r,θ+θ0)F(w,ϕ+θ0)f(r, \theta + \theta_0) \Leftrightarrow F(w,\phi+\theta_0)
  4. Symmetry(注意数字信号为[0,1,2,3,,M1][0,1,2,3,\cdots,M-1]所以在M2\frac{M}{2}的基础上判断对称性)

    • (0,0)(0,0)对称 (M2,N2)(\frac{M}{2},\frac{N}{2})对称
      偶函数even w(x,y)=w(x,y)w(x,y) = w(-x,-y) w(x,y)=w(Mx,Ny)w(x,y) = w(M-x,N-y)
      奇函数odd w(x,y)=w(x,y)w(x,y) = -w(-x,-y) w(x,y)=w(Mx,Ny)w(x,y) = -w(M-x,N-y)
      共轭对称(f(x,y)real) F(u,v)=F(u,v)F^*(u,v) = F(-u,-v) F(u,v)=F(Mu,Nv)F^*(u,v) = F(M-u,N-v)
      共轭反对称 (f(x,y)imaginary) F(u,v)=F(u,v)F^*(u,v) = -F(-u,-v) F(u,v)=F(Mu,Nv)F^*(u,v) = -F(M-u,N-v)
    • f(x,y)real \Leftrightarrow 实部偶,虚部奇
    • f(x,y)实且偶\Leftrightarrow F(u,v)实且偶, 此时相位为0,不改变相位!!
    • f(x,y)实且奇\Leftrightarrow F(u,v)虚且奇,此时相位为90,容易补偿相位!!
    • \cdots \cdots
  5. 2D Convolution theorem

    • (AB) ⋆ (CD)=(A+C1)(B+D1)(A * B )\ ⋆\ (C * D) = (A+C-1) * (B+D-1)
    • padding
      • 保证卷积结果正确
      • 确保可以进行FFT